Saturday, March 9, 2019
Cell Energetics Study Guide
Cellular Energetics Study suck 1. Overall Metabolism a. Oxidation a corpuscle LOSSES hydrogen, zippo is RELEASED b. decrease a molecule GAINS hydrogen, vigor is GAINED and stored (the more strike downd a molecule is, the more energy is stored in its COVALENT BONDS) *** Al personal manners advance in a coupled pair (RED-OX)*** c. Electron Carriers i. Oxidizing Agents ar bring down(a) to OXIDIZE another molecule 1. NAD+ changes glucose to 2 pyruvate in glycolysis, oxidizes pyruvate to carbonic acid fluff in the Krebs cycle (gets reduced to NADH) 2.N adenosine diphosphate+- oxidizes H2O to O2 during the Light dependant responses of photosynthesis, final electron acceptor from chlorophyll (PSI) (gets reduced to NADPH) 3. FAD+- oxidizes NADH to NAD during glycolysis and transported to the mitochondrion (gets reduced to FADHs) ii. Reducing Agents are OXIDIZED to REDUCE another molecule 4. NADH- reduces 2 pyruvate to 2 lactic acid in fermentation, reduces O2 during the res piratory twine (gets oxidate to NAD) *CANNOT kick the bucket through and through the mitochondrion* 5.NADPH- reduces CO2 to form carbohydrates (Calvin Cycle) in the Dark reactions of photosynthesis (gets oxidized to NADP) 6. FADH2- reduces O2 during the respiratory chain (gets oxidized to FAD) *CAN pass through the mitochondrion* 2. Phosphorylation Formation of adenosine triphosphate (ADP + P adenosine triphosphate) d. Substrate-level direct enzymatic exaltation of a phosphate to ADP * Only occurs during glycolysis when O2 is not needful to function * Only a small amount of ATP is sustaind this way e.Electron Transfer /Chemiosmosis the movement of protons (H+) down a concentration gradient through ATP synthase that can HARNESS THE ENERGY OF THAT GRADIENT (proton-motive force) to bond ADP and phosphate to create ATP through oxidative phosphorylation * Occurs during the Light parasitical Reaction * 90% of ATP is produced this way 3. Photosynthesis f. Balanced Net Reaction light 6CO2 + 6H2O C6H12O6 + 6O2 g. Light Dependent Reaction occurs on the thylakoid lumen iii. Photolysis oxidation of H2O to release electrons used to return PSII to ground state iv.NADP Reduction NADP receives an electron from PSI as it passes through electron transfer chains, reducing it to NADPH+. Electrons are passed from excited atoms that gain energy from a photon. v. ATP Synthesis ATP is produced by chemiosmotic phosphorylation. Proton gradient (within the thylakoid interior) is made as electrons from photosystems are passed through proton pumps. h. Light Independent Reaction occurs in the stroma vi. CO2 altering RuBP + CO2 2 PGA (a form that can be easily reduced).The reception is catalyzed by RUBISCO. 7. In the presence of oxygen, RuBP + O2 Bad Sugar process is called photorespiration. Plants overpower this by keeping a HIGH concentration of CO2. Land plants mustiness compromise opening the stroma to maintain high CO2 concentration with going of H2O. There are 2 addit ional adaptations that evolved a. C-4 Pathway formation of oxalacetate (C-4) from CO2 + pep (C-3). Occurs in outer cells (mesophyll). Calvin cycle occurs in privileged cells only(prenominal) (closer to supply of CO2, bundle sheath). b.CAM Pathway like C-4, but repair only occurs at shadow, when water loss is minimal. Found in retire from plants, like cacti. vii. Calvin Cycle 8. PGA is reduced to PGAL using the products of the light dependent reaction, NADPH (oxidized) and ATP (provides energy) 9. One-sixth of the PGAL produced is used to create glucose for the cell to grow and repair. 10. Five-sixths of the PGAL is used to produce RuBP, completing the cycle (energy requiring). 4. Cellular Respiration i. Balanced Net Reaction C6H12O6 + 6O2 6CO2 + 6H2O j.Glycolysis occurs in the cytoplasm. All organisms carry out this process. viii. Glucose is double phosphorylated by 2 ATP and broken up into two three carbon phosphorylated molecules called PGAL ix. from each one PGAL is ph osphorylated by a free phosphate and ADP to form Biphosphoglycerate (BPG) time NAD is reduced to NADH. x. Each BPG aides in Substrate train Phosphorylation of two ADPs to form 2 ATPs. piss is released. The remaining 3 carbon molecule is pyruvate. k. Fermentation when pyruvate is used to oxidize NADH to replenish NAD+.Only produces 2 ATP per glucose through glycolysis. Some organisms (anaerobic) do it exclusively. Occurs regularly in all cells, but products can build up when NAD supplied through reduction of pyruvate is not available. 2 Forms xi. Alcoholic produces grain alcohol and CO2 from reduction of pyruvate. xii. Lactic acid produces lactic acid from the reduction of pyruvate. l. Krebs Cycle NAD required to begin. Takes shoot for in the ground substance of the mitochondria or in the cytoplasm of prokaryotes. xiii. Pyruvate is oxidized to Acetyl CoA, Reduced by _______, Releases 1 NADH. iv. Acetyl CoA is added to oxalacetate to form Citrate. xv. Citrate is broken down releasing 2 H2O and is oxidized 4x by NAD+ thrice and once by FAD+. One Substrate Level phosphorylation occurs producing ATP. Oxaloacetate is the product and continues the cycle by being added to the next available acetyl radical CoA. m. Electron Transport and Oxidative Phosphorylation takes place on the cristae (inner mitochondrial) membrane. xvi. NADH and FADH2, products of Glycolysis and Krebs are oxidized by Q (molecule embedded in the membrane).Electrons are passed to cytochrome and protons are pumped into the proton pumps. xvii. The protons delicate back through ATP synthase in a process called chemiosmosis. The energy harnessed allows an oxidative phosphorylation of ATP. (3 for each NADH, 2 for each FADH2) xviii. Free protons in the matrix and the electrons accepted by E. T. C are passed to O2, which is reduced to water. Stomata Allows gas exchange since a lot of water can be lost, plants only open stomata for photosynthesis in twenty-four hourslight at night they close to reduce loss of water. **CAM plants keep their stomates closed during day and open at night*** Mesophyll C-3 Plants Calvin Cycle during day C-4 Plants CO2 combines with 3 carbon molecule PEP to form C-4 acid CAM Plants stores CO2 in organic compounds that are synthesized at night Bundle sheath C-4 Plants Calvin Cycle during day CAM Plants Calvin Cycle during day Thylakoid lumen Light dependent reactions Stroma Calvin Cycle/Light independent reactions inside membrane E. T. C. Cytoplasm Glycolysis & Fermentaion Matrix Krebs Cycle Diagrams (know following structures and what takes place there)
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment